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A unified treatment of wave motion in a stratified fluid, with or without density 
discontinuities, is achieved by reducing the governing differential system to a 
Sturm-Liouville system. With the aid of Sturm’s comparison theorem, it is found 
(without detailed calculations) that, for any stratification, the phase velocity in- 
creases as the wave-number decreases and that, for the same wave-number, the 
phase velocity increases as the density gradient is increased everywhere and 
decreases as the density is increased everywhere by a constant amount. Sturm’s 
oscillation theorem provides upper and lower bounds for the phase velocity for a 
givenstratification, agiven wave-number, aiidagivennumber of zeros of theeigen- 
function (or a given number of stationary surfaces in the fluid). The inequalities 
giving these bounds are used to explain the well-known tendency for surfaces of 
density discontinuities to behave as rigid boundaries when the stratification in 
each layer is slight. The rigid-boundary behaviour of interfaces in such cases 
enables one to obtain the approximate eigenvalue spectrum by superimposing 
the spectra of the individual layers (with the interfaces treated as rigid) on 
the spectrum of the interfacial (or free surface) waves, obtained by ignoring 
the slight continuous stratification in each layer. It is pointed out that the 
Ritz method can be used for calculating the eigenvalues even when the 
density is discontinuous, and examples are given to show the accuracy of 
the Ritz method. The nature of the spectrum when the depth is infinite is also 
clarified. 

In  the course of the development of the theory, the effects of compressibility 
and of three-dimensionality are determined and given explicitly, the rate of 
growth of unstable stratifications is related to the phase velocity of waves in 
stable ones, and equipartition of energy is proved. Motion due to a wave- 
maker is discussed in order to bring out the connexion between the type of the 
governing partial differential equation and the nature (local or not local) of the 
disturbances. The effect of surface tension and the stability of a stratified fluid 
under vertical oscillation are also discussed. 

1. Introduction 
The propagation of gravity waves in a system consisting of many distinct layers 

of fluids was investigated by Webb (1884) and Greenhill (1887) many years ago. 
Recently, Benton (1953) considered the propagation of long waves in a system 
of flowing layers, and by a limiting process generalized the result to apply to 
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waves propagating in a flowing fluid with continuous stratification. His approach 
provides a desirable link between results for distinct layers and those for a con- 
tinuously stratified fluid. However, a unified theory is still lacking, and a 
convenient method for determining the phase velocity remains to be adopted. 
In this paper, the approach is diametrically opposite to that of Benton. Instead 
of considering a continuous stratification as a limit of a discontinuous one, as 
Benton did, one deals with continuous stratifications directly and treats surfaces 
of density discontinuity as limits of regions of large density gradients. If the 
effect of viscosity is neglected, the governing differential system is a Sturm- 
Liouville system, and Sturm’s theorems can be used for the prediction of the 
ranges in which the phase velocities for the various modes must lie, for comparing 
the phase velocity in one stratified fluid with that of the corresponding mode in 
another, and for explaining a well-known behaviour of the surfaces of density 
discontinuity. The theory of infinitesimal waves presented herein also includes a 
technique to obtain the phase velocity to any degree of accuracy, an example of 
wave motion generated by a simple wave-maker, and an investigation of stability 
under vertical vibration. 

2. The governing differential system 
The differential system governing the propagation of gravity waves in a 

continuously stratified fluid at rest is well known (Lamb 1945, p. 378). Since the 
effect of compressibility will be discussed later, it is desirable to derive the 
differential system for wave propagation in a stratified and compressible fluid 
at rest, on the assumption that the change of state for each material particle is 
isentropic (the entire fluid not necessarily having the same entropy). The equa- 
tions for incompressible fluids can then be immediately obtained by letting the 
sound velocity approach infinity. 

With x, y, and z denoting Cartesian co-ordinates, z being measured vertically 
upward, and u, v and w denoting the corresponding velocity components, the 
mean density p ( z )  and mean pressure p ( z )  are related by the hydrostatic condition 

- 
j if  = -gp. 

The linearized equation of continuity is 

1 ap - au av aw 
- + p  -+-+- + w p t = o ,  
at ( ax ay ax 

in which p is the density fluctuation and the accent indicates differentiation with 
respect to x .  Since the velocity and the density perturbation are assumed to be 
small, their products and products of their derivatives have been neglected in 
the equation of continuity, and will be neglected in all the equations to be pre- 
sented in this section. The linearized equation of isentropy is 
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in which p is the pressure fluctuation and c, the sound velocity, which can vary 
with z. The equations of motion are, for an inviscid fluid, 

From the first two of equations (4), it  follows immediately upon cross-differen- 
tiation that 

If the motion is started from rest, or if u and v (as well as other dependent vari- 
ables) are assumed to have an exponential time factor, 

and a potential 4 exists for u and v 

The motion is therefore irrotational when viewed from above, in much the same 
way that Hele-Shaw flows are irrotational when viewed in a direction perpen- 
dicular to the (closely spaced) plane boundaries. The equation of continuity then 
assumes the form 

and integration of the first two of equations (4) produces 

with the function of integration F(z,  t) absorbed in a$/%. After differentiation 
with respect to t and utilization of equations (3) and (2a), this equation assumes 
the form 

Substituting a$/at for p in the third of equations (4), one has 

a (3+pw)  +gp = 0. 
at a Z  

From equations (6) and (Za), the equation 

is obtained, whereas differentiation of equation (5) produces 
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From these one obtains by subtraction 

a 2  - a - , a w  
v 2  g$+-(cZq5) +-(pw)-- pc,- [ a2 a ] a t 2  ax(  a,) = 0. 

Equation (5) and the equation following (7) give 

from which follows 

(7) - (c:)‘ 7 a 2  v2q5 = - at4 a 4  ( pw)-g& - (PC::) + (g2p+c:g~‘)v2w-c:p~V~w. a 2  at 

I n  the problems treated in this paper, q5, w, p and p are assumed to have a 
common factor X(x, y) which satisfies the equation 

(V2+a2)X(x,y) = 0. (8 )  

If the time-dependence of q5 and w is assumed to be contained in the exponential 
factor e-ig*, so that 

elimination of q5 from equations (5) and (7) with the aid of (8) produces, with w 
now indicating w( x )  , 

( 9 7  w) = e-iu*fl(x, y) r.4(4, w(41, 

(2 1 ) [cr 2 2 -  c,(pw 1 ‘  ) + ((T4-a2g2-C,2a2~2)pw-cc,2a2gp’w] 

+ (C:)’p($gw - dw’) = 0. (9) 

For three-dimensional sinusoidal waves, the appropriate form for S(x,  y) is 
exp i (kx  + Zy), so that, with cr = kc, 

(u, V, W,P,P) = [ ~ ( z ) ,  v(z ) ,  w(z),P(z),P(z)] exp i (kx + ly - kct). 

If, for brevity, u is written for u(z), etc., the relationships between the several 
unknowns are 

C ~ U  = p ,  ZU = kv, ikcpw = c ( ~ u ) ’  + gp, - ikcp - gpw = c:( - ilccp + wp’), 
and 

which are recorded here for general convenience. With a2 = k2 + l2 and r = kc, 
equation (9) has the form 

11 {k2c2c,2 (pw’)’ + ( k ~ ) ~  pw - ( k2 + Z2) [ (g2 + k2c2c;) pw - c,” gp‘w]} 

+(c~)’P[(lc2+Z2)gw-k2c2w’] = 0. (9a) 

If c, is constant, equation (9 a)  assumes the simpler form 
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If the fluid is bounded by two rigid barriers at z = 0 and z = d, the boundary 
conditions are 

w(0) = 0) w(d)  = 0. 

Boundary conditions at free surfaces and interfaces will be presented later. 
For an incompressible fluid, c, = co, and equation (10) reduces to 

( p w ’ ) ‘ - y  (kZp+:p‘) w = 0, 

which for two-dimensional motion can be further reduced to the simple form 

For two-dimensional motion of a compressible fluid with constant cs, equation (10) 
has the form 

(13) 

3. General considerations 
Although equation (10) appears rather complex as it stands, for many prob- 

lems its solution can be reduced to that of equation (12). First of all, the effect 
of three-dimensionality can be determined once and for all. From equation (9) 
it  is seen that for a given stratification ( T ~  is a function of a2 (in this case k2 + Z 2 )  
alone. (The sum k2 + 12 really is the square of the wave-number of a corresponding 
two-dimensional wave travelling in the direction with direction numbers k, I ,  
and zero.) Thus, without any loss of generality, the problem of determining c 
given Ic and I is reduced to the problem of determining (T for a two-dimensional 
wave motion with wave-number k,  = a, from equation (9). The rule of conver- 
sion, first enunciated and proved by Squire (1933) in connexion with a problem of 
hydrodynamic stability, is as follows. The u for a three-dimensional disturbance 
of wave-numbers k and 1 is the same as that for a two-dimensional disturbance 
of wave-number (k2+Z2)&, the actual phase velocity c (in the x-direction) is 
(r/k which is greater than the c for an actual two-dimensional disturbance of wave- 
number ( k 2 +  Z2)* by the factor (k2 + Z2)*/k. 

Turning now to equation (13)) one seeks to determine the effect of compressi- 
bility in a simple way, without any detailed calculations. In  this connexion it 
must be remembered that the sound velocity is in general a function of location. 
For liquids it can without great error be taken to be constant, and at  all events 
the effect of compressibility is small. For gases, c, is constant only for an isother- 
mal atmosphere. Under the assumption that c, is constant, and with a fictitious 
wave-number k, for a corresponding wave motion in incompressible fluid 
defined as 

k; = k2+? c: F - k Z ) ,  c4 (14) 

equation (1  3) is reduced to the form 

(j7W’)’- (k; j j+$p’)  w = 0. 
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After c is determined from this equation for a chosen ki, the actual k can then be 
calculated simply from equation (14). Of course, the assumed ki should be greater 
than g/cc, (in most cases) for a wave motion. Otherwise k2 would be negative 
(since c is in most cases less than c,) and the motion would not be a wave motion. 
With k found, u is also known. This procedure evidently involves a process of 
trial and error if c is to be found for a given k, or k is to be found for a given u, but 
i t  certainly is a convenient means of determining the effect of compressibility. 
Since glk is the c2 for free-surface waves in a semi-infinite fluid, and the c2 for 
internal or interfacial waves is usually smaller, k: > k2 in most cases of practical 
interest. In  a subsequent paragraph it will be shown that the c2 determined from 
equation (12) decreases with k2. Thus, whenever c, is constant and g > kc2, the 
effect of compressibility is to reduce the phase velocity, and the amount of reduc- 
tion can be simply determined in the manner described above. 

Attention will then be focused on equation (12) in the major part of this 
paper. Since this corresponds to two-dimensional flows of an incompressible 
fluid, the stream function will be introduced for convenience 

@ = f(z)expik(x-ct). 

The velocity components being 

f'(z)expik(x-ct), w = - a' = ikf(z) exp ik(x - ct), u = - - = -  a@ 
aZ ax 

the function w(z) in equation (12) can be replaced byf(z) 

(pf')'- (k$+$) f = 0. 

7 = -  
d 

If, further, the new variable 
Z 

is introduced, and accents are now used to denote differentiations with respect to 
7, equation ( 12 a)  becomes 

(i if ') '-(m2p+$p')f= 0,  (15) 

in which m = kd is the dimensionless wave-number. 
The boundary conditions at the rigid boundaries are, in terms of 7, 

f(0) = 0, f(1)  = 0. (16) 

At a surface of density discontinuity the density below the surface will be 
denoted by pl and that above by ,Eu. The vertical velocity w at the interface is 
aLJat, in which 6 is the deviation of the interface from its mean position. With 
6 expressed as & exp ik(x - ct), the kinematic condition is 

-cQ =f, (17) 

to be applied at the interface. Apart from the exponential factor, the pressure at  
the interface is then, from equations (l), (17), and the first of equations (4), 
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for the upper fluid, and 

for the lower. Continuity of the vertical velocity demands the continuity of the 
stream function: 

Hence the equality of pressures across the interface demands that 

f u  =h* 

in terms of 7. Equation (18) has been obtained by a fairly complicated argument. 
But if p andf’ in equation (15) are allowed to be discontinuous, and only the 
continuity off is maintained, integration of that equation in the Stieltjes sense 
across the interface produces (18) immediately. There are then two possible 
approaches. One can consider the system of differential equations governing the 
motion in the various continuously stratified layers, together with the interfacial 
conditions derived above. Or one can consider the motion of the entire fluid to 
be governed by equation (15), and allow solutions with discontinuousf’ a t  the 
interfaces. The former is the conventional approach, but the latter approach is 
adopted in this paper, and it appears to be the more powerful and fruitful. 

By the use of the present approach the whole power of the Sturm-Liouville 
theory can be borrowed to achieve a unified treatment of wave motion in strati- 
fied fluids. Without detailed calculations, certain conclusions can be drawn in 
regard to  the variation of the phase velocity with wave-length and with the 
density distribution, the range in which the phase velocity must lie can be 
predicted, and certain well-known effects of density discontinuities can be ex- 
plained. Furthermore, the Ritz method can be applied for calculating the phase 
velocities even when the density has discontinuities. The unified treatment is the 
main contribution of this paper. Many of the results obtained as a consequence 
of this treatment are new, or have a greater generality than has previously been 
achieved. 

In  order to have a Sturm-Liouville system, the upper boundary is assumed to 
be always rigid, and a free surface is considered to be a liquid-gas interface 
covered by a fluid layer of small but non-zero* density which is bounded above 
by a rigid plane. The location of the upper boundary is, in the presence of a free 
surface, assumed to have little effect on the phase velocities. Thus the boundary 
condition at the upper boundary is always f(1) = 0, and the governing dif- 
ferential system is a Sturm-Liouville system consisting of equations (15) and 
(16) in the former of which p may have finite discontinuities. The integral form 
of equation (15) is 

* Dr F. Ursell has pointed out to the author that the assumption of non-zero density 
for the top layer, made here for convenience, is really not necessary, and the developments 
presented here can well be extended to include cases in which a free surface in the ordinary 
sense is present. In this connexion, see Sz.-Nagy (1947). 
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in which h = gd/c2, and p is assumed to be greater than zero. In  the presence of 
density discontinuities, the integration in equation (20) is in the Stieltjes sense, 
and the functionf(7) obtained (by step-wise integration, for instance) is continu- 
ous with discontinuous derivatives at the locations where the density is discon- 
tinuous. The boundary condition f ( 0 )  = 0 is automatically satisfied. Since p’ 
is uniformly negative, it is easy to see that a sufficiently large h will force f to be 
zero at 7 = 1, and that at least a first eigenvalue exists. The eigenfunction satis- 
fies equation (15) everywhere except at the density discontinuities, where equa- 
tion (18) is automatically satisfied. 

To show that equations (19) and (16) possess infinitely many eigenvalues cor- 
responding to eigenfunctions with the number of zeros increasing with the index 
of the eigenvalues, even when p is discontinuous, one may approximate the 
given stratification by an infinite sequence of continuous stratifications with 
increasingly greater density gradients near the discontinuities of the given strati- 
fication. For a specified number of zeros for f in the closed interval (0 to 1 in- 
clusive), the eigenvalues (of A)  for the sequence must approach a limit* (by the 
Weierstrass-Bolzano theorem), which is the eigenvalue for the given stratifica- 
tion, for the specified number of zeros off in the interval. That the limit is unique 
follows essentially from the fact that, for a specified number of zeros off, the 
eigenvalue varies continuously with a continuous variation of the density dis- 
tribution-a fact that can be proved easily. Consequently much of the Sturm- 
Liouville theory can be carried over to the case of discontinuous density. This 
fortunate situation is entirely due to the fact that the interfacial conditions (1  8) 
are implied in equation (15), and automatically satisfied by equation (19). 

For a given density distribution and a given wave-number, the admissible 
values of c are determined by equations (15) and (16) . These values are the phase 
velocities of waves propagating in the fluid (otherwise at rest). If c has an imagin- 
ary part, the wavea will grow? in amplitude. It is easy to show that if p’ is every- 
where negative c is real, and if p’ is everywhere positive c is pureIy imaginary. 
Thus, if equation (15) is multiplied by the complex conjugate off and integrated 
between 0 and 1, and equations (16) are utilized, we have 

which states that if p’ is negative throughout, c2 is positive and c is real, and that 
if p’ is positive throughout, c is purely imaginary and the fluid is unstable. Clearly 
the same conclusion would have been reached if equation (1 1) for three-dimen- 
sional disturbances had been used instead of equation (15). If p’ is partly nega- 
tive and partIy positive, equation (20) still demands that c2 be real. It must also 
be negative, since it must be unstable on physical grounds. If p is discontinuous, 
the terms 

- 

* That this limit exists can be proved by the aid of an easily constructed density 
distribution, which by Sturm’s comparison theorem (for continuous p )  must have an 
eigenvalue (finite) greater than those for the sequence. 

t The simplest way to see this is to note that k may be assigned negative values, so that 
whatever the sign of the imaginary part of c, the waves will grow. 
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must be added to the left-hand side of equation ( Z O ) ,  and the conclusions are 
unchanged. In  the above expression, i indicates the ith interface, A p  is the den- 
sity jump (negative), and M is the total number of density discontinuities. The 
terms to be added arise from integration by parts and application of equation ( 18). 
Alternatively and preferably, the last integral in (20) can be considered to be in 
the Stieltjes sense. In  this discussion, the density of the top layer can be taken 
to be zero without introducing any difficulty. 

For an inversion of an originally stable stratification or, equivalently, for a 
reversal of the direction of gravity, equation (15) shows that the eigenvalue c2 
must change sign but retains its magnitude, Thus the fluid will be unstable, and 
the amplification factor - ikc is exactly the same as the time frequency (r ( = kc) 
for the stable stratification. Calculations of phase velocities for given k's therefore 
also provides results for the amplification factor when the stratification is un- 
stable. In  the following sections, p' will be assumed to be negative throughout. 

Without any detailed calculations, conclusions can be at once drawn from 
equations (15) and (16) that for the same stratification and the same mode* the 
smaller the wave-number m (hence the longer the wave-length), the greater the 
phase velocity c. This conclusion is the direct consequence of Sturm's funda- 
mental theorem (Ince 1944, pp. 324-5) that the solutions of 

ax " ( K g ) - G f  = 0 

oscillate more rapidly when K and G are diminished algebraically. In the present 
discussion K is p, which is the same for all wave-lengths. The quantity G is 

which certainly diminishes as m diminishes. Inspection of the proof of the 
theorem reveals that it is still valid for the specified K and G if ji has finite dis- 
continuities. For the greatest value of c, the boundary conditions call for ex- 
actly one oscillation in the interval (0, 1). If for a certain m and c the boundary 
conditions are satisfied, for a smaller m and the same gd and c there would be one 
zero at 7 = 0 (as required) and one other between 0 and 1, but not at  1, since the 
new G would be uniformly smaller than the old. In  order to satisfy the boundary 
condition at 7 = 1, c must be greater if gd is the same, since G increases uniformly 
with c. The fastest waves are therefore the longest waves. If the fluid is flowing 
at a uniform velocity U greater than the phase velocity of the longest waves of 
gravest mode, no infinitesimal disturbances can travel upstream. The flow is then 
supercritical and internal hydraulic jumps may occur under suitable downstream 
conditions. The reason for this is that finite disturbances travel faster than in- 
finitesimal ones, and can travel with a speed equal to U to make a stationary 
jump possible. If U is less than the greatest possible c but larger than the 
greatest c for higher modes, internal hydraulic jumps may still occur. 

From equations (15) and (16) it can be seen immediately that for a given 
p(7)  and a given m, c is simply proportional to ,/(gd). The values of gd/c2 are deter- 

* The mode of the wave is determined by the number of zeros of the function f. 
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mined by the governing differential system, and are the eigenvalues, the lowest 
of which corresponds to t,he greatest possible phase velocity. According to 
Sturm’s main theorem of oscillation (Ince 1944, p. 233), the number of zeros in 
the open interval 0 < < 1 for the functionf(7) is greater by one as the index 
(arranged according to increasing magnitude) of the eigenvalue for A = gd/c2 is 
increased by one. (Since the end-points are always zeros by specification, the 
number of zeros in the closed interval 0 < 7 < 1 also increases by one when the 
index of A is increased by one.) If the first mode is associated with the first 
eigenvalue, etc., higher and higher modes correspond to more and more nodal 
planes of wave motion, and smaller and smaller phase velocities. In  the following 
sections, the definition of ‘mode ’ given above will be retained throughout, even 
in the presence of surfaces of density discontinuity. Whenever distinguishable, 
waves principally associated with surfaces of discontinuity are called interfacial 
waves in general or free-surface waves in particular (when the density on one 
side is very small), and waves principally associated with continuous stratifica- 
tions are called internal waves. 

Sturm’s fundamental theorem is again useful for comparing the phase velo- 
cities for the same wave-number but different stratifications. According to the 
theorem, for the same m and gd/ca, the number of zeros off(7) for a smaller p and 
a greater Ip’I in the interval (0, 1) is at least as great as that for a greater ji and 
smaller Ip’ I. This means that if the eigenvalues for p1 and p, are A, and A,, respec- 
tively, and if p1 > p ,  and Ip;I < Ip;I, then A, < A, and c, > c,. This is very under- 
standable from a physical point of view. From a review of the derivation of 
equation (15 ) ,  it is clear that p is associated with the role of density as a measure 
of inertia, whereas gp‘ is a measure of the restoring force responsible for the ex- 
istence of wave motion. A smaller p and greater Ip‘I therefore correspond to a 
greater time frequency of oscillation and (for the same m) a greaterphasevelocity. 
If density discontinuities are present, the comparison theorem is useful only if 
they occur at the same locations for the two stratifications under comparison. 
In  that case the inequality for p’ must be supplemented by 

at all locations of density discontinuities. 
With the aid of the Sturm-Liouville theory, the ranges in which phase velo- 

cities for the various modes must lie can be determined for the case of continuous 
density. If the lowest density is a and the highest density b, and if the algebraic- 
ally least and greatest values of the density gradient are - ,8 and - ,8 + E ,  then for 
the nth mode (with n + 1 zeros in the closed interval 0 < T,J < 1) 

or 

Although these inequalities have been derived for continuous p ,  they are still 
valid in the presence of density jumps, provided the n + 1 zeros all occur in one 
layer with continuous density. For small e and small b -a, and for large n or m, 
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the inequalities give a rather sharp estimate of c. These inequalities are obtained 
by comparing the zeros of the eigenfunctions with those of sine functions (which 
are solutions of a Sturm-Liouville system), and by applying Sturm’s funda- 
mental theorem (Ince 1944, p. 227.) 

4. Surfaces of density discontinuity 
It has been observed (Lamb 1945) that for two superposed layers of homo- 

geneous fluids differing slightly in density and with a free surface on top, there 
are two distinct modes of gravity waves. For the one mode the phase velocity 
and the amplitude distribution with height are nearly the same as those of waves 
propagating on the free surface of a homogeneous fluid, the slight density dif- 
ference of the two fluids producing only a slight correction. For the other mode 
the situation is entirely different. The free surface is now nearly horizontal, with 
negligible waviness, the greatest amplitude occurs at the interface, and the phase 
velocity is very much smaller. These conclusions follow from detailed calcula- 
tions given in Lamb’s book. What will happen in the general case of many inter- 
faces (not excluding a free surface) separating many continuously but slightly 
stratified layers? Is it possible to reach similar conclusions? And, if so, is it 
possible to do so without detailed calculations? The answers to these questions 
are in the affirmative. 

The simplest case of two continuously and slightly stratified layers with a 
single interface (which can be considered a free-surface if is, is small) will be con- 
sidered first. The first eigenvalue for h ( = gd/c2) calls for exactly two zeros situ- 
ated at the end-points. Thus, the first mode corresponds essentially to interfacial 
waves only slightly affected by the slight continuous density variations. The 
subsequent modes are markedly different from the first one. For the next mode 
there is a zero of f(7) between 0 and 1 (Sturm’s oscillation theorem; see Ince 
(19441, p. 233). Since the continuous density gradient is small throughout, the 
inequalities (22) immediately show that c2 - p and is very small. Sincef’ is of 
the order* of 1, equation (18) shows thatfis very small a t  the interface and of the 
order c2. Equation (17) then shows that is of the order of c, andis thereforesmall. 
Thus the interface is almost horizontal, as if it were a rigid surface. For subse- 
quent eigenvalues the number of zeros continually increases, and the same argu- 
ment can be applied to reach the same conclusion. Furthermore, from the 
inequalities (22) it can be seen that, even if the density gradient is not very small, 
the phase velocity is still small (and hence the interface still behaves essentially 
as a rigid boundary) at large wave-numbers for any mode, and for high modes 
at the same wave-number. 

The case next in complexity is that of three continuously stratified layers 
contained between two rigid boundaries and separated by two surfaces of 
density discontinuity. This includes the case of two layers with a free surface 

* The function f can of course be multiplied by any constant. For convenience, its 
maximum value will be taken to be of order 1. For not too high a modef’(i) will then be 
of order 1. If the mode is high, f’ may be considerably greater than 1, but then /3 is sup- 
posed to be very small, and the higher the mode, the smaller c* is for the same /3. In fact, 
the product cyf‘lgd is of the order of p/n. 
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on top, for the highest of the three layers can be considered to consist of a fluid of 
very small density. For the first mode, the only zeros of f(7) occur at p = 0 and 
7 = 1.  By Sturm’s oscillation theorem another zero must appear in the interval 
(0, 1) for the second eigenvalue. In  which layer will this zero appear? Depending 
on the thicknesses of the layers and the magnitude of the density gradient in each 
layer, this middle zero can occur in any of the three layers. However, for very 
small density gradients in the layers, it  can be concluded that the middle zero 
must occur in the middle layer. For, with the density discontinuities at the inter- 
faces kept constant, the density gradient in each layer can be made to approach 
zero. As these gradients become smaller and smaller, a stage will be reached when 
the middle zero will be situated in the middle layer and will stay there as the 
gradients are further reduced, since otherwise either the highest or the lowest 
layer would have two zeros, and, in the limiting case, with two zeros in a homo- 
geneous fluid, there could be no wave motion. Only one mode of wave motion 
would then exist in the limiting case of three homogeneous layers of fluids, in 
contradiction to established facts. 

If the continuous density gradients are not small, liberal sufficient conditions 
can be found under which the middle zero must be located in the middle layer. In  
the case of three layers of thicknesses d,, d, and d,, it can be shown that 

and 

(23) 

(24) 

me sufficient conditions for long waves. If there is indeed an additional zero in 
the lowest layer, then Sturm’s oscillation theorem states that 

From equation (23) it  then follows that 

which is sufficient to guarantee an additional zero (other than the one at 7 = 1) 
in the upper two layers, in contradiction to hypothesis. Hence the middle zero 
must not occur in the bottom layer under the stated condition. The proof for 
the statement concerning equation (24) is entirely similar. For the general case 
of n layers of thicknesses di (i = 1, . . . , n), criteria similar to inequalities (25) 
and (26) can be used to determine the regions in which the additional zero or 
zeros must be located. 

For the case of three layers, the next higher mode brings in a fourth zero. If 
the previous three zeros are in different layers, this fourth one must cause one of 2 

the layers to have two zeros. Then the inequalities (22) show that for small 
density gradients (small p) c2 must indeed be very small. From the interfacial 
conditions stated by equation (18) it can be seen that the two interfaces now 
behave almost like rigid boundaries-a situation which is maintained in the 
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subsequent modes. For the general case, it can be shown by reasoning similar to 
that employed in the preceding two paragraphs that, for very small density 
variation in each layer, zeros in addition to those at  the end-points will appear one 
after the other as the modes are higher and higher, until each layer has one and 
only one zero. The next higher eigenvalue, bringing in another zero, corresponds to 
a mode with one of its layers having two nodal points (or zeros). The surfaces of 
density discontinuity will then behave like rigid boundaries, and will so behave 
for subsequent modes. The number of modes for which the surfaces of density 
discontinuity do not behave like rigid boundaries is n - 1 for n layers of fluid- 
the same as the number of these surfaces. The phase velocities for these modes 
are, for small density variation in each layer, nearly the same as those for wave 
motion in n homogeneous fluid layers with the same depths and the same mean 
densities as the layers under consideration. 

The conclusions reached in this section remain essentially valid if the effect 
of surface tension l7 is included in the interfacial boundary conditions, which 

If there is only one surface of density discontinuity and if the density gradient 
elsewhere is small, the effect of surface tension, as far as interfacial waves are 
concerned, is to increase g by the amount 

J?m2 r k 2  

If there are two or more surfaces of discontinuity, approximate phase velocities 
of the interfacial waves can be found by assuming the density in each layer to be 
constant and equal to the mean density (provided that the density variation in 
each layer is small), and by imposing the boundary conditions (27) instead of (18). 
For internal waves the effect of surface tension is to stiffen the interfaces further 
(as can also be seen from the fact that the coefficient off in equation (27) is 
increased by surface tension), and if the interfaces behave like rigid barriers with- 
out surface tension, they will do so even more effectively with the aid of surface 
tension. Thus the phase velocities for truly internal waves are hardly affected 
by surface tension. 

5. Equipartition of energy 

the theorem of equipartition of energy. For isopycnic particles 
Equation (20), used in a previous section to prove the reality of c, also contains 

C 

Integration of u2, w2 and c2 with respect to x over a wave-length produces the 
common factor 4. With the multiplication of this common factor, equati6n (20 )  
can be written, in dimensional terms 
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The left-hand side of this equation represents the excess of potential energy* 
per unit wave-length in the x-direction over that of the mean configuration, or 
the potential energy of wave motion. The right-hand side obviously represents 
the kinetic energy per unit length. The equation therefore states that there is 
equipartition of energy. Although the proof given is for progressive waves, a 
slight modification of the form of u, w and g will make it valid for standing waves 
also. 

Equation (20) was derived for the case of rigid barriers at z = 0 and z = d, and 
for a continuous stratification. If there are density discontinuities, the integral 
on the left-hand side of equation (28) must be taken to be in the Stieltjes sense, 
but the equipartition of energy is unaffected. In  this discussion, the density of 
the top layer can be taken to be zero without introducing any difficulty. 

For the same wave-number m general wave motion in a stratified fluid may be 
composed of many modes, each of which corresponds to an eigenvalue of gd/c2 
(or of c ) .  It will be shown that the kinetic and potential energies of the component 
modes are entirely separable. In other words there are no energy couplings 
between the component modes at all. The proof for the case of a continuously 
stratified fluid between rigid boundaries is straightforward. The differential 
system consisting of equations (15) and (16) is self-adjoint, and it is well known 
that for such a system the eigenfunctions are orthogonal. In  the present instance 
this means that (with r and s indicating the modes) 

or that there is no coupling of the various modes as far as potential energy of the 
wave motion is concerned. To obtain the corresponding result for kinetic energy, 
equation (15) will be written in the form 

(pf;)’ - (m2P + A,P’)f, = 0. (30) 

If equation (30) is multiplied by fs and integrated, and if equations (16) are 
utilized, the result 1; P(f:fs’ + m2frfs) dv = 0 (31) 

is obtained, which states that there is also no coupling between the different 
modes in connexion with kinetic energy. 

In  the presence of surfaces of density discontinuity, the governing differential 
system is no longer self-adjoint in the ordinary sense, but the de-coupling of 
potential and kinetic energies can be proved with the aid of the boun.dary con- 
ditions (18). Cross-multiplication of equation (30) and the equation 

* The factor 3 can best be explained by considering the potential energy of water waves. 
The water in the troughs are raised to the crests, each element <dx by the height 6. Thus 
the total potential energy is proportional to the integral of <a over a half wave-length. 
Hence the factor +. 
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by f, and f, and integration of the difference of the results produces, after utiliza- 
tion of equation (20) at all the interfaces, 

which is the same as equation (29) if the latter is considered to be in the Stieltjes 
sense. From equations (30) and (33), equation (31) is again obtained. Thus the 
normality of the energy spectra is established even in the presence of density 
discontinuities, as indeed is to be expected. 

So far the normality of the energy spectra has been established only for the 
same wave-number. It remains to mention that if the wave-numbers are dif- 
ferent, the net coupling effect is finite over a distance in the x-direction however 
long, and is therefore zero per unit distance. 

The conclusion of equipartition of energy is valid for three-dimensional waves 
also. The proof is entirely similar. One needs onIy to start with equation (11) 
instead of equation (15), and use Zu = kv. 

6. The case of infinite depth 
As has been remarked by Lamb (1945) for incompressible fluids, and as can be 

easily verified from equation (9a) for a semi-infinite fluid with any stratification 
(whether compressible or not), the system consisting of equation (9a) (with 
1 = 0 and w changed to f ), the conditions at infinity 

f ( z ) - + O  as z+-m, (34) 

and the wual free-surface condition 
f ’ ( O ) - - f ( O )  9 = 0 

C2 
(35) 

possess the solution f(z) = ekz, c2 = g/k. (36) 

The fact that the solution is independent of the mean density distribution and 
that it corresponds to irrotational motion is certainly rather surprising. But the 
explanation is not far to seek. The solution is the same as the well-known solution 
for wave motion in a semi-infinite homogeneous fluid. If it is valid also for a 
non-homogeneous fluid, there must be something very special about it. The 
special feature is that in co-ordinates moving with the waves the streamlines of the 
(steady) flow corresponding to the solution are lines of constant pressure, as can 
be readily demonstrated. This situation is not affected if the density is a function 
of the stream function alone (which is the case for an incompressible fluid in 
steady motion) or for a compressible fluid with isentropic change of state along 
a streamline (hencep is a function of p alone along a streamline). The distribution 
of mean density or mean entropy in the vertical direction is quite immaterial, 
so long as the density or entropy does not change along a streamline in the moving 
frame of reference. For convenience only two-dimensional waves have been 
discussed. The essential features of the flow are, however, unchanged if the waves 
are three-dimensional. 

Actually, though the solution given by equation (36) is the only one which is 
independent of density stratification, another interesting one exists if c, is con- 
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stant. Equation (13) ,  with 20 changed to f ,  and the boundary conditions (34)  and 
(35)  are evidently satisfied by 

f (4  = exp { (g / c3  4, c = c,. (37)  

The motion represented by this solution, which is incidentally independent of 
the wave-number, is not irrotational. That it is independent of the density varia- 
tion (so long as it is consistent with constant cs or with an isothermal atmosphere) 
is again because streamlines in a frame moving with the waves are isobars. It 
has often been said that sound waves are longitudinal. The wave motion dis- 
covered here propagates with sound velocity, and is strongly affected by compres- 
sibility, and yet, since c, is large and therefore u - f '(2) is small, it is predomi- 
nately transverse. 

In  the case of finite depth the eigenvalues are discrete and, if the stratification 
is continuous over any portion of the fluid, infinite in number. If the depth is 
infinite, the spectrum of the eigenvalues is continuous, with a number of discrete 
eigenvalues equal to the number of density discontinuities (or possibly greater 
than it if the fluid is compressible). For demonstration, a fluid with the density 
variation p = pOe-bz (6 positive) 

and with a free surface at  z = 0 may be considered. For this particular density 
variation, the atmosphere is isothermal and the sound velocity constant, as 
can be seen byapplyingthe hydrostatic equation d p  = - gpdz.  Thus equation (13)  
can be solved exactly. (The free surface should, of course, be removed to x = co 
to make the problem realistic.) However, the purpose of this section is to show 
the continuity of the spectrum of u. Helice the fluid will be assumed to be in- 
compressible for simplicity, and the fluid to extend to z = - 00. Equation (12a)  

f ( x )  = A e a l Z + B a z z  possesses the solution 

in which (a1, a,) = f [b 5 J i b 2  - 4k2($- l ) ) ]  (u = kc). (38)  

If gb < u2, equation (34)  demands that B = 0, and the surface condition (35)  
demands that 

9k2 or c2 = g Ul = 2 
k U 

The solution is therefore the one discussed before in the present section. How- 
ever, if gb > u2, both a, and a, have a positive real part, so that the condition at 
z = - co is automatically satisfied, and the surface condition assumes the form 

A a , + B a , - ( A + B ) -  9k2 = 0. 
U2 

Given any k, b and u, B can be solved in terms of A or vice versa. Thus any 
equal to or less than Ij(gb) will do, and the spectrum of u is continuous from zero 
to J(g6). For any k the spectrum of c is then continuous from zero to I j (gb) /k .  
For k < b, the value gk for u2 satisfies the requirement gb/a2 2 1. Thus the situa- 
tion can be summarized as follows. ( 1 )  For any k,  gk is an eigenvalue for u2. It 
corresponds to a motion identical to that of ordinary surface waves, and is an 
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isolated mode if k > b. ( 2 )  Any v2 less than gb corresponds to a possible wave 
motion. For k < b, the eigenvalue (for (r2) for the free-surface mode is imbedded 
in the continuous spectrum for (r2. 

The example just given is instructive in showing that free-surface waves are 
not necessarily faster than internal waves. In  fact, even if the depth is finite, 
free-surface waves or interfacial waves (corresponding to discontinuous density 
changes) are not necessarily faster than internal waves that owe their existence 
to continuous stratifications. They are faster only if the gradients of the con- 
tinuous density stratifications are small. 

If the top of the fluid is covered with a rigid boundary, no solution is possible 
for gb 6 (r2. The continuous spectrum is given by 

These values of v2 all correspond to internal waves. The free-surface mode is 
removed with the removal of the free surface, as expected. 

7. Calculation of phase velocities 
The phase velocities of waves propagating in a stratified fluid can be calcu- 

lated rapidly by the method of Ritz. The differential system determining h = gd/c2 
for a given density variation and a given wave-number consists of equations (15) 
and (16) for the case of fixed boundaries. Equation (15) is a special case of the 
general equation 

in which L is a linear operator. According to the Ritz method, a set of N linearly 
independent functions +,(q) satisfying the boundary conditions will be chosen. 
The quantities 

L(f 1 = hG(r) f ,  (39) 

Ars  = -1; +AT) ~[+s(r)l d r  

and Brs = -1 ‘(7) $AT) +s(r)dT (41) 

(40) 

1 

0 

are symmetric in the sense that their values are unaffected as r and s are inter- 
changed. This is obvious with Brs. With A ,  symmetry is immediately clear upon 
integration by parts and utilization of the boundary conditions. The integrals 
in equations (40) and (41) are in the Stieltjes sense when applied to wave propa- 
gation in a stratified fluid with density jumps. (For a similar application, see 
Courant & Hilbert (1931,Vol.1. pp. 349-50). In  fact, in case a free surface exists, 
it  is not necessary to assume that there is a layer of light fluid with non-zero 
density over it. The choice of $(r )  can therefore be less restricted, see Courant 
(1926).) The eigenfunction is now approximated by a linear combination of the 
chosen functions N 

F ( r )  = c c,$Ar). (42) 
r = l  

With f in equation (39) replaced by F ,  that equation is multiplied by F and 
integrated to yield 

N 

r , s = l  
s,’ TLP) dy + ~ ’ 3 2  dv = Z; (Am -pBrs) c,cs* 

32 Fluid Meoh. 8 



I A11-PB11 A12-PB12 ... AlN--llCBlN 

A21-pB21  A 2 2 - p B 2 2  ... A 2 N - p B 2 N  

... .,. ... ... 
ANi-pBNi A ~ 2 - p B ~ 7 2  ..- A N N - @ ”  

With 

( 4 3 )  = 0. 

the solution satisfying the boundary condition at y = 0 is 

f = A(eaiV-eaxV). 

The condition f (1) = 0 then demands that 

eai - erne = 0, 

or a1-a2 = J{p2--4(pA-m2)} = 2n7ri (TZ = 1 , 2 ,  ...). 

Hence 

or, with A‘ =/?A, 
@A = 4n27r2 + p 2  + 4m2, 

A’ = n2r2 + m2 + &p2. ( 4 5 )  

To use the Ritz method, it is better to write equation (44 )  in its original form, 
before the exponential factor was cancelled out 

(e -hf  ’ ) I  - m2 e-hf = - A e-lq f. 

If  $Jv) = sinmy and the &st element of the determinant in equation (43 )  is 
equated to zero, the result (after cancelling a common factor) is obtained 

271.4+m2(2712-p) = p1(2+-p2),  

or, for small /I, pl = r2 + m2 + +p2. 
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This is greater than the first eigenvalue only by the amount $a2. That roots of 
equation (43) are always greater than the first eigenvalue is well known, but it is 
important to remember that this is so only if the differential equation is written 
in the form of equation (15), i.e. in the self-adjoint form. Had equation (44) been 
used for the application of the Ritz method, the value n2 + m2 would have been 
obtained for p,, which is smaller than the first eigenvalue. 

Had the true eigenfunctions e&bq sin rnr been chosen to be $Jr), the true eigen- 
values would of course be obtained. However, the purpose of this example is to 
demonstrate the power of Ritz's method in the general case, in which the form 
of the eigenfunctions is not known and cannot be easily guessed. 

A second example is provided by the density variation 

P(r) = POJ(1 -Pr). 
An exact solution exists in this case for long waves, Equation (15) can be written, 
for zero wave-number, 

or 

with 

The boundary conditions are 

f(6) = 0 at 5 = 0 and [ = 1. 

The eigenvalues for long waves are exactly 

Here again, if sinrnt were chosen to be $?(r) in the application of Ritz's 
method, the true eigenvalues would be obtained. This will not be done, for the 
same reason as stated before. Instead, we choose 

$Ar) = (1 -Pr))sinmr. 
Then 

4 1  = t, 

Therefore 

whereas 

32-2 
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showing that the error is again of the order of p 2 .  The two examples given demon- 
strate that the modified Froude number c/d(g’d) (with g‘ equal to ( g / p )  di j /dv) for 
a small and practically constant density gradient is approximately equal to 
n-l for long waves-a fact of great importance for prediction of the existence 
of lee waves in the wake of a body advancing in a stratified fluid. The number 
n-l, however, cannot be applied to fluids whose density gradient is not practically 
constant. 

It has been shown that for n continuously stratified layers with n - 1 or n sur- 
faces of density discontinuity there are n - 1 or n modes of motion corresponding 
to interfacial (or free-surface) waves. If the density gradient in each layer is 
small, approximations to  the first n- 1 or n eigenvalues corresponding to these 
modes can be found by Greenhill’s formula on the assumption that the density 
in each layer is constant and equal to the mean of the actual density in that layer. 
Since it has been shown that for higher modes the surfaces of density discon- 
tinuity behave like solid barriers, the subsequent eigenvalues can be found with- 
out appreciable error by considering each layer to be bounded by solid planes, 
and by arranging the eigenvalues h found separately for all the layers in ascending 
order of magnitude. 

To test the validity of this statement, one may consider the case of two layers 
of depth d, and d,, and with density variations given by 

ijl(vl) = C,e-~17iy ij2(q2) = C2e-pa7zy 

in which 
z z 

7 --, 7 - - 7  

- d, - d, 

the subscript 1 is for the upper layer, and the origin of z is taken at the interface. 
The differential equation governing the motion in each layer is equation (44), 
and the solutions satisfying the boundary conditionsf,( 1) = 0 andf2( - 1 )  = 0 are 

fl(vl) = A(e”i7i - e(az-ai)+azV), 

f 2 ( y 2 )  = B(eriVz - e(Yz-Yi)+Yzv), 

with 

Imposing the interfacial conditions 

one has 

or, alternatively, 
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The question is now asked: what error will be committed if g/c2 is calculated from 
equation (45) for each layer, on the assumption that the interface is rigid? For 

4 1  (45a) 
the upper layer 

according to equation (45), which is large* for small p1. The dominant term in 
equation (46) is therefore the last term, and one sequence of phase velocities is 
given approximately by 1 -e%-ai = 0, 

which is the condition that would be obtained for the upper layer if the interface 
were rigid. The error committed is the first term, and is of the magnitude 
2nn-Cl/dl which can be annihilated by changing c2 slightly (and therefore also 
making 1 - ea2-"1 slightly different from zero). One may, in fact, multiply equation 
(46a) by c2/(C2-C1)g and note that the error committed in calculating c2/g 
by (45a)  is of the order of [2nnCl/(C2- C,)] [P1/(n2m2 +m2)],  which is small if pl 
is small or if n or m is large. For the lower layer, equation (46b) can be used for 
proving that little error is committed if equation (45) is used to  calculate c, 
provided p2 is small or n or m large. Thus the entire phase-velocity spectrum of 
internal waves (i.e. with the interfacial one excepted) is obtained by super- 
imposing the phase-velocity spectrum of one layer on that of the other, both 
obtained on the supposition that the interfaces were rigid. Although the example 
is a specific one, the conclusion reached is evidently valid in general, in virtue of 
the results obtained in $4. 

If, however, the density difference in each layer is not small compared with 
the mean density, phase velocities can only be obtained by solving the entire 
eigenvalue problem. This can be done either approximately, by the use of the 
Ritz method, or analytically, by solving the differential equation for the bottom 
layer with the restriction that f (0) = 0 and withf'(0) arbitrary. In  the analytical 
solution, when the first interface is reached the starting f for the next layer is 
made to be the same as the terminal f for the bottom layer, and the startingf' for 
the new layer is found from the first interfacial boundary condition. This pro- 
cedure is continued until the upper boundary, free or rigid, is reached. The h a 1  
boundary condition is imposed and the eigenvalues for h are found from the final 
equation obtained. 

8. Waves generated by n plane wave-maker 
The motion generated in a stratified fluid contained between two rigid boun- 

daries by an oscillating plane normal to these boundaries and extending all the 
way between them can be found by solving 

9 1  
c2 Pldl 
- = ~ (n2+ + m2 + '82) 

with (T now equal to 277 times the oscillation frequency of the wave-maker. The 
eigenvalues are now those of m2 consistent with equations (16). If is sufficiently 
large, the quantity in the second parenthesis of equation (15a) is positive, and the 

* Since interval waves are being discussed, c2 is very small even according to the exact 
equations (46), as can be asserted by virtue of the inequalities (22). Therefore the state- 
ment that g/c2 is large for small is not based on a circular argument. 
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eigenvalues will be negative. These correspond to imaginary m’s and exponential 
(instead of sinusoidal) dependence of the disturbance on x .  If cr is very small, the 
quantity referred to above is negative, and the eigenvalues for m2 are positive. 
The m will be real and waves will propagate from the oscillating plane. For the 
intermediate case of medium cr, the quantity in the second parenthesis in equa- 
tion (15a) is positive for certain levels, and negative at others. In  this case the 
eigenvalues of m2 go from negative infinity (through discrete values) to posi- 
tive infinity. 

If the oscillating plane is situated at x = 0 and oscillafes as a cos d, and the 
fluid extends from there to x = 00, the solution for the motion in general consists 
of a parallel-flow part, a part corresponding to the local disturbance, and a part 
corresponding to wave motion. The parallel-flow part is necessary in order to 
satisfy the demand of continuity and is given by 

which obviously satisfies equation (15a), with m equal to zero (not an eigenvalue). 
The solution for the stream function is then, with Sommerfield’s radiation con- 
dition at  infinity, 

m 

+ C A n f n ( ~ ) c o s ( m n x - d ) ,  (47) 
n=nl 

in which n,is the index of the first positive eigenvalue for m2, and the coefficients A 
are determined by the condition at the oscillating plane 

by the usual method, since the eigenfunctions fn are orthogonal. Since the f’s 
are eigenfunctions of a Sturm-Liouville system, and since thelatter are known to 
be complete, the completeness of the f ’s is not in question. A similar solution can 
be obtained if density jumps are present, and if the wave-maker has any shape 
and any specified motion whatever. 

The mean energy flux at  infinity can be calculated either directly or by means 
of the group velocity for each wave component. (The formula for calculating 
group velocity from phase velocity is the usual one.) The mean rate of work done 
by the wave-maker is equal to this mean energy flux. If all the m’s are imaginary, 
there is no wave motion and no mean energy flux at infinity. Hence the mean rate 
of work done by the oscillating plane is zero. 

The sign of the second parenthesis, which decides whether the eigenvalues of 
m2 are positive or negative, or partly positive and partly negative, is directly 
connected with the type of the partial differential equation governing the motion. 
For incompressible fluids in two-dimensional motion with a time dependence 
described by e-iut, equation (8) assumes the form 



Gravitg waves in a strati$ed Jluid 503 

If this is multiplied by p and the new variable 

is used. the eauation 

is obtained, which is elliptic or hyperbolic according as (Gortler 1954) 

is positive or negative. But this quantity is proportional to 

Consequently the sign of the second parenthesis in equation (15a) determines the 
type of equation (48). However, the type of the partial differential equation 
governing the motion of a stratified fluid, though of course relevant to the type of 
solution obtained (as shown in this section), does not play as significant a role as 
the type of the partial differential equation governing the homentropic flow of 
a compressible fluid. The reason is simply that for a given mode of wave motion 
corresponding to a [ p  + (g / v2d)  (dpldy)] with alternating signs, the particle velo- 
cities being small, the velocity in the steady flow relative to the waves is simply c 
everywhere, and the elliptic and hyperbolic regions do not in any sense corre- 
spond to subsonic and supersonic flows. 

When equation (48) is hyperbolic, real characteristics exist, with slopes given 

fT 
tan y' = 

[ - gp(dp/dz) - @p2]& ' 
For very small v, the characteristics are horizontal. This is in agreement with the 
finding (Yih 1959a) that steady, two-dimensional flows of an inviscid stratified 
fluid become one-dimensional when the motion is weak-a phenomenon that 
has been experimentally demonstrated (Yih 1959 b) .  

9. Stability of stratified liquid under vertical vibration 
The stability of a homogeneous liquid with a free surface when the container is 

accelerated periodically has been considered by Benjamin & Ursell (1954). The 
cause of instability is a kind of resonance, though not in the usual sense of a forced 
harmonic oscillation, and the frequency of free oscillation plays a role in the deter- 
mination of stability or instability. For a stratified liquid the frequencies of free 
oscillation are infinite in number, and it can be expected that the resonance 
phenomenon has to be investigated for each mode of free oscillation, i.e. for each 
of the eigen-frequencies in the absence of the imposed vibration. That this is 
indeed the case can be seen from the following analysis. 

The equations of motion relative to the vibrating container are 
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in which P cos wt is the acceleration of the container. Cross-differentiation of the 
first two of equations (49) again produces an equation which shows that pw and 
pv possess a potential 4, so that 

By the same procedure as that employed in 5 2,  an equation similar to equation (6) 
is obtained 

+(g-Fcoswt)p = 0. (50)  

The equation of continuity now has the form 

and the equation of incompressibility is 

_ -  - - wp', aP 
at 

with the prime indicating differentiation with respect to z. These equations are 
applicable even to gases if the effect of compressibility is small. Applying the 
Laplacian operator in x and y to equation (50) ,  dividing throughout by g - Pcos wt, 
differentiating the result with respect to t, and utilizing the equations of con- 
tinuity and of incompressibility, one has 

equation (51) can be written, with w denoting w(z) for simplicity, 

This shows that (jiw')' - a2pw = CP'W 

and 
) a2 

$(g-Fcoswt 

For a continuously stratified fluid bounded by two horizontal planes of the 
container (at distance d apart), Cmust be ga2/v2 in which c2is exactly the eigen- 
value in equation (15a), which is simply the dimensionless form (with w changed 
to f and for the special case of two-dimensional flow) of 

for only when C assumes such a value can the boundary conditions 
w(0) = w(d) = 0 be satisfied. Since surfaces of density discontinuity can be con- 
sidered as limiting cases of regions of large density gradients, C must be equal to 



Gravity waves in a stratiJied fluid 505 

ga2/u2 even in the presence of density discontinuities, so long as v2 is understood 
to  be the eigenvalue of (55) for the given stratification, and so long as the effect 
of surface tension is neglected. Consequently, in the absence of surface tension, 
equation (54) has the form 

A more convenient equation than equation (56) for investigation of stability is 
the equation for the amplitude function a(t)  of the deflexion (5 of any material 
particle from its mean position. Since w = aLJat, we have A = da/dt, and inte- 
gration of equation (56)  yields 

d2a u2 
- - - _- (g - F cos o t )  a + C’. 
dt2 9 (57) 

Initially, u, v, w,p,p and 5 are all zero, so that a is zero and, from equation (49), 

aw ay 
at at2 

= - -  -0 - 

or 
d2a 
- = 0. 
dt2 

Consequently C’ = 0,  and, with T = iwt, equation (57) becomes 

d2a 
__ + (p- ~ ~ C O S  2T) a = 0,  
dT2 

in which ( p  not indicating pressure) 

Equation (58) is Mathieu’s equation in its standard form. If q vanishes, equa- 
tion (58) shows that the frequency of oscillation is u/2n, as expected. The quantity 
F / d  is the linear amplitude of the vibration of the container. Hence q = ( 2a2/g) x 
(amplitude of vibration) (compare with Benjamin & Ursell 1954). 

Whether the fluid is stable or not depends on whether a ( T )  remains bounded as 
T --f co, and this in turn depends on p and q. The regions of stability and in- 
stability are shown in figure 1. Only the first quadrant of the diagram is shown 
because both p and q are positive. In  fact, the complete diagram in McLachlan’s 
book (1947, p. 41) shows that the diagram is symmetric about the p-axes. The 
unshaded regions are stable regions and the shaded ones unstable regions. Apart 
from an exponential factor e p T  (p depending on p and q) indicating the rate of 
growth, the solution for the unstable cases also possesses exact periodicities 
(see McLachlan 1947, pp. 40, 41, 77, 78). In  the lowest shaded part of figure 1, 
the period for T is 27r, so that the period for wt is 4n. This means that the frequency 
of fluid oscillation is only half the frequency of the container. In  the next shaded 
region, the period for T is n, so that the oscillation of the fluid and that of the 
container are isochronous. The third shaded region is a region of half-frequency, 
etc. The stable regions would be regions of half-frequency or isochronous regions 
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but for a factor eibT, with p dependent on p and q. If is irrational, the solution 
is not periodic at all. 

Since 

the points in the p-q plane to be considered in each case are all on a straight line 
radiating from the origin. For each* a there are infinitely many c, and therefore 
infinitely many points on that straight line. Whereas some points may lie in 
regions of instability, others may lie in regions of stability. Since decreases 

the 
and 

toward zero as the index of the mode is higher and higher, the origin is a limit 
point of the (infinitely many) points in the p q  plane whose locations determine 
stability or instability. From figure 1 it is clear that there is a small region of 
stability around the origin, so that the fluid is stable for sufficiently high driving 
frequency, and against resonance with sufficiently high modes of free oscillation. 
Significant is the fact that no matter how small P is, there is always a region of 
instability, though the region is smaller and smaller as F becomes smaller and 
smaller. 

* In the owe treated by Benjamin & Ursell for each a there is only one u. 
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So far surface tension has been omitted from the discussion. If the amount of 
density discontinuity (Ap) is constant, and if the fluid in each layer is homo- 
geneous, the effect of surface tension can be taken into account in a very simple 
manner. The differential equation governing the flow in each layer is the Laplace 
equation, satisfied by the potential function #(x, y ,  2) .  The boundary conditions 
at the interfaces are (compare with equation (20a)) 

Since Vz{ = -az[, this is enough to show that in the absence of continuous 
stratification, and if Ap is constant, the effect of I? is to increase g by the amount 
a21?/Ap. Thus, under the stated restrictions, the stability of superposed layers of 
homogeneous fluids can be studied by changing g to g +  (aT/Ap) ,  and subse- 
quently applying the results obtained for the case of no surface tension. In  
particular, if there is only one layer of fluid with a free surface (with Ap = p )  

cz = atanhad g+- , ( a:) 
4a tanh ad ( a:) 2aF tanh ad 

so that P = wz 9+-- 2 q =  ? 

in agreement with the results of Benjamin & Ursell. The case of two homogeneous 
fluids bounded by two rigid barriers and having an interface can be treated simi- 
larly. If the thickness of each layer is i d  

gz = - a t a n h g ( g + F ) ,  2 
P1+ Pz 

and p and q are again given by equation (59). 
If there is continuous density change as well as discontinuous ones, or if each 

layer is homogeneous but the density discontinuities (Ap) are not constant, the 
effect of surface tension becomes rather difficult to determine-especially in the 
former case. However, it seems unlikely, in view of the behaviour of surfaces of 
density discontinuity when the fluid is undergoing free oscillation with small 
frequencies, that surface tension will have an appreciable effect on the ‘resonance’ 
of the imposed acceleration with these free oscillations. In  other words, for very 
small d s ,  it is reasonable to expect that the stability or instability can be decided 
by ignoring surface tension entirely. Additional research in this direction is 
necessary before more definite and more general conclusions can be drawn as 
to the effect of surface tension on the kind of stability under discussion. 
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